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ABSTRACT
Most existing facial expression recognition methods assume
the availability of a single emotion for each expression in
the training set. However, in practical applications, an ex-
pression rarely expresses pure emotion, but often a mixture
of different emotions. To address this problem, this paper
deals with a more common case where multiple emotions
are associated to each expression. The key idea is to learn
the specific description degrees of all basic emotions for each
expression and the mapping from the expression images to
the emotion distributions by the proposed emotion distri-
bution learning (EDL) method. Experimental results show
that EDL can effectively deal with the emotion distribution
recognition problem and perform remarkably better than the
state-of-the-art multi-label learning methods.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.4.8 [Image Pro-
cessing and Computer Vision]: Scene Analysis

Keywords
Emotion distribution learning; facial expression recognition;
description degree

1. INTRODUCTION
The increasing applications of facial expression recogni-

tion,especially those in human computer interaction, have
attracted a great amount of interests in the past decade.
There are many single-emotion learning methods that have
been used, for example, neural-network-based methods [8],
support vector machine (SVM) [14] and hidden markov mod-
el (HMM) [15]. As a single-emotion problem, satisfactory
recognition accuracy has been reached in the previous re-
search [10].
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However, according to Plutchik’s wheel of emotions the-
ory [11], there are a small number of basic emotions, and
all the other emotions occur as combinations, mixtures or
compounds of the basic emotions and can exist in varying
degree of intensity or levels of arousal. So, the single-label
learning methods used to recognize one basic emotion for
each expression may not be suitable for the real-life facial ex-
pression recognition applications, where an expression rarely
expresses only one basic emotion.

Fig. 1 gives three examples from the s-JAFFE database.
The s-JAFFE database contains 213 facial expression im-
ages. Each image was rated by 60 persons. A five-level score
is applied to each sample on the 6 basic emotions (happi-
ness, sadness, surprise, anger, disgust and fear [3]), where 5
represents highest emotion intensity and 1 represents lowest
emotion intensity. Then the average scores for each emotion
on each expression image were obtained. From Fig. 1, we
can see that each emotion in one expression image corre-
sponds to a positive score, no matter it is high or low, which
agrees with the Plutchik’s theory that an expression can be
viewed as a mixture of basic emotions [11].

Rudovic et al [13] proposed a multi-output Laplacian Dy-
namic Ordinal Regression method, which can output the
probability of each emotion label and estimate intensity.
However, it assumes only one correct emotion label for each
expression and outputs the emotion with the highest proba-
bility as a result, which cannot match the mixture emotion
cases in real life.

If each basic emotion is considered as a label, multi-label
learning (MLL) [20] can be used to describe each expression
image with several relevant emotions. However, MLL cannot
learn the intensity of each emotion. MLL might first select
a threshold, then the emotions with scores higher than the
threshold are labeled as relevant emotions, while the others
are labeled as irrelevant emotions. As in Fig. 1, the relevant
emotions are set as +1 and the irrelevant emotions are set
as -1. In such way, all the relevant emotions are deemed as
equally important. As a result, the important information
about the emotion intensity is lost.

To address the above problem, we propose an emotion dis-
tribution learning (EDL) algorithm in this paper. Different
from the above algorithms, EDL considers that expressions
are often the mixtures of basic emotions and allows differ-
ent intensities in each emotion. Concretely, EDL uses a de-
scription degree dyx as a numerical indicator to measure the
relationship of the emotion y to the expression x and indi-
cate the relative emotion intensity. The sum of description
degrees of all emotions for one expression is 1, meanwhile
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each description degree is between 0 and 1. For a particular
expression, the description degrees of all the emotions have
a similar data form to probability distribution. As a result,
we termed it as emotion distribution. Then, a learning pro-
cess is invoked to learn the mapping from the expression
image to the emotion distribution, which aims to minimize
the difference between the true distribution and the predict-
ed distribution. Furthermore, both the single-label learning
and MLL can be considered as special cases of EDL in facial
expression recognition.
The rest of the paper is organized as follows. Section 2

proposes the method of emotion distribution learning. In
section 3, the experimental results are reported. Finally,
several conclusions are drawn in Section 4.

2. EMOTION DISTRIBUTION LEARNING

2.1 Emotion Distribution
The goal of EDL is to learn a mapping from an expression

image space X = Rm to the emotion distribution over a
finite set of labels Y = {y1, y2, ...yc}. Each label represents
one of the basic emotions. As discussed in Section 1, facial
expression is often composed of one or more emotions, and
each emotion has its own intensity. We use the description
degree dyx to indicate the intensity of emotion y for the facial
expression x, where x ∈ X and y ∈ Y. Normalize the emotion
intensity to make dyx ∈ [0, 1], and

∑
y d

y
x = 1 to constitute

the emotion distribution.
Fig. 1 shows some typical examples from the s-JAFFE

database together with their multi-labels and emotion dis-
tributions. The threshold is chosen as 2.5 in MLL scenar-
ios to illustrate the difference between MLL and EDL more
clearly. The emotion distribution is represented by a curve.
There are six values at the horizontal axis labeled by the six
basic emotions. The values at the vertical axis represent the
description degrees of each emotion. For Fig 1(a), the de-
scription degree of happiness is the highest, and all the oth-
er five emotions’ description degrees are significantly lower.
Happiness can be considered as the only relevant emotion.
Single-emotion learning, MLL and EDL algorithms can all
deal with such case well. In Fig 1(b), anger and disgust have
similar emotion intensity and their description degrees are
significantly higher than other emotions, which means that
both anger and disgust might be the relevant emotions. In
such case, single-emotion learning algorithms can no longer
work. But both MLL and EDL algorithms can match such
case well. In Fig 1(c), anger’s description degree is the high-
est, while disgust’s description degree is a little lower than
that of anger but significantly higher than the other four
emotions. In this case, both anger and disgust might be the
relevant emotions, but they have different emotion intensity.
For considering the relevant emotions as equally important,
MLL might lose the important information about the inten-
sity difference between the relevant emotions. Consequently,
measuring emotion intensity is very important, as with emo-
tion intensity one can know how much each emotion is and
how many emotions are related to a particular expression.

2.2 Learning from Emotion Distribution
Given a training set G = {(x1, E1), (x2, E2), ..., (xn, En)},

where xi ∈ X is an expression instance and Ei = {dy1xi , d
y2
xi , ...,

d
yc
xi } is the emotion distribution associated with xi. The

goal of emotion distribution learning is to learn a condition-
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Figure 1: Typical expressions from the s-JAFFE
database together with their scores, multi-labels, e-
motion distributions.

al probability mass function p(y|x) from G, where x ∈ X and
y ∈ Y. Assume that p(y|x) is a parametric model p(y|x; θ),
where θ is the model parameter vector.

Many different criteria can be used to measure the dis-
tance between two distributions, such as Squared X 2, Eu-
clidean, Jeffery’s divergence, Kullback-Leibler (K-L) diver-
gence and so on. Here we use Jeffery’s divergence defined
by

DJ(Qa||Qb) =
∑
j

(Qj
a −Qj

b)log
Qj

a

Qj
b

, (1)

where Qj
a and Qj

b are the j -th element of the two distribu-
tions Qa and Qb, respectively. Jeffery’s divergence is bal-
anced, which makes DJ(Qa||Qb) equal to DJ(Qb||Qa).

The above formula calculates the sum of all the distances
between the description degrees of the same emotion, i.e.,
the superscripts of Qa and Qb are the same (i.e., j). One
possible problem of the definition in Eq. (1) is that the rela-
tionship among different emotions is not considered. In fact,
some basic emotions often appear together, e.g., disgust and
fear, and some often conflict to each other, e.g., happiness
and sadness. Thus the weighted Jeffery’s divergence is pro-
posed here as

DwJ(Qa||Qb) =
∑
j,k

λjk(Q
j
a −Qk

b )log
Qj

a

Qk
b

, (2)

where the weight λjk models the relationship between the
j -th emotion and the k -th emotion in the distribution, which
can be calculated by

λjk =


1

Λj
(ρjk)

η |ρjk| ≥ ε

0 otherwise

(3)

where ρjk =
∑

i(d
yj
xi

−d
yj
x )(d

yk
xi

−d
yk
x )√∑

i(d
yj
xi

−d
yj
x )2

√∑
i(d

yk
xi

−d
yk
x )2

means correlation

coefficient between the j-th emotion and the k-th emotion.
Λj =

∑
k(ρjk)

η is a normalization factor that makes sure∑
k λjk = 1. η is a positive odd number, which controls the

degree the correlation coefficient works. ε is a threshold. If
a couple of emotions have an absolute value of correlation
coefficient smaller than ε, they are considered to have no
relationship.

Then the optimal model parameter vector θ∗ is deter-
mined by
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θ∗ = argmin
θ

∑
i

DwJ(Ei||Êi)

−ξ1
1

n

∑
k

∥θk − θ∥22 +
1

2
ξ2

∑
k,r

θ2kr

= argmin
θ

∑
i,j,k

λij(d
yj
xi − p(yk|xi, θ))(lnd

yj
xi − lnp(yk|xi, θ))

−ξ1
1

n

∑
k

∥θk − θ∥22 +
1

2
ξ2

∑
k,r

θ2kr,

(4)
where Ei is the ground truth emotion distribution of the i-th
example and the Êi is the predicted one by p(y|xi; θ). The
second term is a regularizer to prevent too smooth output
to emphasize the important emotions, and the third term is
another regularizer to prevent unstable output. ξ1 and ξ2
are the balance factors.
As to the form of p(y|x; θ), similar to the work of Geng

et al [5], we assume it to be a maximum entropy model [2],
i.e.,

p(yk|xi; θ) =
1

Zi
exp(

∑
r

θkrx
r
i ), (5)

where Zi =
∑

k exp(
∑

r θkrx
r
i ) is the normalization factor,

xr
i is the r-th feature of xi, and θkr is an element in θ. Sub-

stituting Eq.(5) into Eq.(3) yields the target function of θ.

T (θ) =
∑
i

Zi +
∑
i,j,k

λjk[
1

Zi
exp(

∑
r

θkrx
r
i )

(
∑
r

θkrx
r
i − lnZi − lnd

yj
xi )− d

yj
xi

∑
r

θkrx
r
i ]

−ξ1
1

n

∑
k

∥θk − θ∥22 +
1

2
ξ2

∑
k,r

θ2kr.

(6)
The minimization of the function T (θ) can be effective-

ly solved by the limited-memory quasi-Newton method L-
BFGS [7]. The computation of L-BFGS is mainly related to
the first-order gradient of T (θ), which can be achieved by
∂T (θ)
∂θkr

=
∑
i,j,k

λjk[pikx
k
i (1− pik)(

∑
r

θkrx
r
i − lnZi

−lnd
yj
xi + 1)]−

∑
i

xr
i (1− pik)− ξ1

1

n
[(θkr − θr)

−1

c

∑
k

(θkr − θr)] + ξ2
∑
k,r

θkr,

(7)
where pik = 1

Zi
exp(

∑
r θkrx

r
i ).

In order to compare with the multi-label learning meth-
ods, labels in the predicted distribution should be divided
into two sets, i.e, the relevant and irrelevant sets. For this
purpose, an extra virtual label y0 is added into the label set,
i.e., the extended label set Y ′ = Y ∪ {y0}={y0, y1, y2...yc}.
Using the new extended label set to do the training process,
the optimal parameter vector θ∗ is learned. As y0 is the
label that distinguishes the relevant and irrelevant emotion-
s directly, it is initialized the same as the threshold used
in MLL. Given a test image x′, its emotion distribution is
predicted by p(y|x′; θ∗). The description degree of y0 splits
the predicted distribution into two sets. The emotions with
the description degree higher than y0’s are regarded as the
relevant emotions, and the rest emotions are regarded as ir-
relevant emotions. So that EDL can realize the function of
MLL without setting the threshold manually.

3. EXPERIMENTS
To demonstrate the effectiveness of the proposed EDL al-

gorithms, we have performed extensive experiments on two
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Figure 2: Typical example of the emotion distribu-
tion predicted by EDL.

widely used facial expression databases: s-JAFFE[9] and s-
BU 3DFE [16], both of them are extended to the emotion
distribution case proposal in this paper.

The s-JAFFE database contains 213 grayscale images posed
by 10 Japanese female models. Each image is of the size 256
× 256 pixels and each model has 2-4 samples for each ex-
pression. The images are cropped manually so that the eyes
are at the same positions, and then the cropped images are
resized to 110 × 140 pixels. The features are extracted by
the method of Local Binary Patterns (LBP) [1]. We set the
diagram to 2 and the number of neighbours to 16. LBP
histograms are then used as feature vectors. The dimen-
sionality of each feature vector is eventually reduced to 243.

The s-JAFFE database is scored by 60 persons on the 6
basic emotions (i.e., happiness, sadness, surprise, fear, anger
and disgust) with a 5 level scale (5 represents highest emo-
tion intensity, while 1 represents lowest emotion intensity).
The average score of each emotion is used to represent the
specific emotion intensity.

The second database named s-BU 3DFE is much larger
than s-JAFFE. There are 2500 examples in this database.
23 students are asked to score the s-BU 3DFE database by
the same method of scoring s-JAFFE. The specific scores
on each basic emotion are obtained and transferred into
emotion distributions. We preprocessed the facial images
and extracted the feature from s-BU 3DFE using the same
method as s-JAFFE.

EDL is compared with four existing LDL methods and
7 widely used MLL methods. For each compared method,
several parameter configurations are tested and the best per-
formance is reported. The virtual label and the threshold
value used in MLL are all set to 2.3. Besides, the η, ε, ξ1
and ξ2 are set as 5, 0.25, 0.0001, 0.001 respectively. For the
LDL methods, k in AA-KNN is set to 6. Linear kernel is
used in PT-SVM. The number of hidden-layer neurons for
AA-BP is set to 60. For the MLL methods, the value of k
is set to 6 in ML-KNN, ratio is 0.02 and µ is 2 in ML-RBF.
Linear kernel is used in LIFT. Rank-SVM uses the RBF k-
ernel with the width σ equals to 1. Ten-fold cross validation
is conducted in each algorithm.

Fig. 2 gives one example from s-JAFFE database by EDL.
The ground truth emotion distribution is obtained by nor-
malizing the scores and the virtual label y0. As can be seen,
the curve of the predicted emotion distribution is very sim-
ilar as the ground truth distribution, which demonstrates
that EDL can learn the varying intensities of all the basic
emotions well. Furthermore, the trained description degree
of the virtual label y0 can act as the threshold automatical-
ly rather than be set heuristically in MLL, which splits the
predicted emotion distribution into relevant and irrelevant
sets.

Table 1 reports the experimental results of EDL and sev-
eral LDL algorithms. The best performance on each mea-
sure is highlighted by boldface. The two-tailed t-tests with
5% significance level are performed to see whether the dif-
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Table 1: Experimental results of Label Distribution Learning Methods

database Algorithm Evaluation Criterion

Euclidean(↓) Sϕrensen(↓) Squared X2(↓) K-L(↓) Intersection(↑) Fidelity(↑)

s-JAFFE

EDL 0.0957±0.0068 0.1002±0.0059 0.0339±0.0043 0.0346±0.0045 0.8998±0.0059 0.9914±0.0011
AA-KNN [4] 0.1306±0.0117• 0.1273±0.0110• 0.0534±0.0086• 0.0556±0.0099• 0.8727±0.0110• 0.9863±0.0023•
PT-Bayes [4] 0.1682±0.0219• 0.1644±0.0168• 0.0835±0.0215• 0.0916±0.0269• 0.8356±0.0168• 0.9784±0.0059•
PT-SVM [4] 0.1696±0.0117• 0.1689±0.0099• 0.0812±0.0094• 0.0854±0.0110• 0.8311±0.0099• 0.9792±0.0025•
AA-BP [4] 0.1908±0.0208• 0.1880±0.0195• 0.1139±0.0210• 0.1100±0.0273• 0.8120±0.0195• 0.9685±0.0058•

s-BU 3DFE

EDL 0.1055±0.0023 0.1061±0.0025 0.0402±0.0017 0.0420±0.0020 0.8939±0.0043 0.9898±0.0046
AA-KNN [4] 0.1549±0.0036• 0.1464±0.0042• 0.0697±0.0036• 0.0743±0.0031• 0.8536±0.0008• 0.9821±0.0036•
AA-BP [4] 0.1648±0.0076• 0.1595±0.0065• 0.0760±0.0061• 0.0808±0.0063• 0.8405±0.0017• 0.9804±0.0061•

PT-Bayes [4] 0.1659±0.0044• 0.1606±0.0049• 0.0766±0.0039• 0.0830±0.0037• 0.8394±0.0010• 0.9803±0.0039•
PT-SVM [4] 0.1701±0.0032• 0.1638±0.0047• 0.0799±0.0044• 0.0877±0.0029• 0.8362±0.0007• 0.9794±0.0044•

Table 2: Experimental results of Multi-label Learning Methods

database Algorithm Evaluation Criterion
Average Precision(↑) Coverage(↓) Hamming Loss(↓) One Error(↓) Ranking Loss(↓)

s-JAFFE

EDL 0.9037±0.0300 2.6913±0.3680 0.2540±0.0352 0.1175±0.0687 0.1374±0.0316
ML-RBF [17] 0.8651±0.0738• 3.2675±0.4157• 0.2484±0.0810• 0.1810±0.1088• 0.2005±0.1085•
ML-KNN [20] 0.8455±0.0605• 3.4310±0.3822• 0.2790±0.0617• 0.1976±0.0616• 0.2184±0.0878•

LIFT [18] 0.8050±0.1042• 3.5397±0.3604• 0.3254±0.0777• 0.2690±0.1679• 0.2515±0.1268•
Rank-SVM [20] 0.7516±0.0982• 3.9198±0.2844• 0.3356±0.1127• 0.3008±0.1390• 0.3276±0.1189•

MLLOC [6] 0.7502±0.0998• 3.9127±0.2146• 0.5734±0.0639• 0.3214±0.1496• 0.3399±0.1275•
BP-MLL [19] 0.7435±0.1009• 4.0786±0.2630• 0.3591±0.1133• 0.3444±0.1477• 0.3593±0.1210•

ECC [12] 0.7380±0.0952• 3.9500±0.2305• 0.3591±0.1133• 0.3484±0.1130• 0.3424±0.1264•

s-BU 3DFE

EDL 0.7861±0.0216 0.5236±0.0758 0.1167±0.0069 0.3667±0.0349 0.1761±0.0178
ML-RBF [17] 0.7157±0.0370• 0.6756±0.1139• 0.1271±0.0075• 0.4360±0.0559• 0.2165±0.0300•
ML-KNN [20] 0.6224±0.0282• 0.9712±0.1103• 0.1387±0.0043• 0.5699±0.0362• 0.2947±0.0243•

LIFT [18] 0.6062±0.0323• 1.0204±0.1225• 0.1443±0.0045• 0.5913±0.0413• 0.2515±0.0296•
Rank-SVM [20] 0.6016±0.0321• 0.9876±0.1231• 0.2118±0.0164• 0.6101±0.0380• 0.3069±0.0338•

MLLOC [6] 0.4970±0.0288• 1.4832±0.2538• 0.1453±0.0042• 0.7140±0.0247• 0.4352±0.0557•
BP-MLL [19] 0.5367±0.0210• 1.1692±0.1043• 0.1817±0.0098• 0.7024±0.0280• 0.3480±0.0263•

ECC [12] 0.4419±0.0185• 1.8396±0.0677• 0.1426±0.0046• 0.7484±0.0317• 0.5438±0.0105•

ferences between EDL and the baseline algorithms are sta-
tistically significant. The results of t-tests are given right
after the performance of each method, where • indicates
significance difference. As can be seen, EDL performs best
on all criteria. The comparison results of EDL with seven
multi-label classifiers are tabulated in Table 2. Similarly,
EDL performs best on all evaluation measures. This implies
that EDL can not only match more complex cases, but also
perform better than MLL methods in the scenario of MLL,
owing to the consideration in varying intensity of the basic
emotions.

4. CONCLUSIONS
This paper presents the problem of emotion distribution

recognition, and proposes to solve it by the algorithm of
EDL. Different from the previous facial expression recogni-
tion methods, EDL can output the intensity of all the emo-
tions, which well matches the reality that one facial expres-
sion is often the mixture of the basic emotions with different
intensity. The experimental results show that EDL perform-
s significantly better than some state-of-the-art multi-label
algorithms and label distribution learning algorithms.
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